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Abstract—Large ASR models are often pre-trained on a
large corpus of public data and then fine-tuned on potentially
sensitive/proprietary downstream data. However, recent work
shows that such ASR models may leak privacy of fine-tuning data.
Differentially private SGD (DP-SGD) is the standard method for
fine-tuning ASR models with formal DP guarantees. However,
fine-tuning full ASR models with DP-SGD is computationally
expensive and can hurt model’s utility due to the curse of
dimensionality for DP-SGD. Thus DP parameter-efficient fine-
tuning (PEFT) is a competitive alternative. In this work, we
conduct the first comprehensive evaluation of DP full fine-tuning
and DP-PEFT methods for training ASR models. We also propose
novel modifications to improve privacy-utility trade-offs, e.g.,
training on synthetic data between pre-training and fine-tuning.
QOur best method for DP-PEFT achieves state-of-the-art 8.0%
WER on LibriSpeech test-other under a strong (10, 3.52e—6)-
DP guarantee on a 600M Conformer.

I. INTRODUCTION

The performance of Automatic Speech Recognition (ASR)
models has significantly improved over the last several years.
Large ASR models such as Conformer [1] and wav2vec [2]
set new benchmarks on speech recognition tasks while also
enabling strong performance on related tasks like speech trans-
lation [3], [4], and speaker verification [5], [6]. The current
training paradigm of large ASR models usually pre-trains a
foundation model on a large corpus of often publicly-available
speech data to learn general representations of speech in a
self-supervised or semi-supervised manner. The pre-trained
models are subsequently adapted for downstream tasks by
fine-tuning on potentially sensitive and/or proprietary domain-
specific datasets.

As large ASR models become more capable, ensuring
privacy of their training data is increasingly important. Recent
work [7], [8], [9] has shown various privacy attacks on trained
ASR models. Specifically, Wang et al. [8] demonstrate that
large ASR models can unintentionally memorize rare/unique
samples in their training data, highlighting the necessity to
preserve the privacy of the data used in training such models.
Differentially private stochastic gradient descent (DP-SGD) is
the gold standard for training machine learning models with
formal privacy guarantees. However, using DP-SGD to train
large models usually hinders model performance [10], [11],
[12], and incurs a high computational overhead compared to
non-private training [13], [14]. This can be prohibitive since
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Fig. 1: Tllustrating our setting of DP fine-tuning.

the (non-private) training cost for large models is usually
exorbitant to begin with.

In this work, we consider the following set-up (also shown
in Figure 1) where we first pre-train an ASR encoder on a
large amount of publicly-available data, and then privately
fine-tune the encoder and an attached decoder on a dataset with
privacy requirements. Motivated by recent work in the DP lan-
guage modeling domain [15], we extensively study parameter-
efficient ASR fine-tuning with DP in order to achieve better
privacy-utility-computation trade-offs. We conduct the first
comprehensive evaluation of a variety of differentially private
parameter-efficient fine-tuning (DP-PEFT) methods including
Adapter [16], LoRA [17] and BitFit [18], on a large state-of-
the-art 600M parameter Conformer [1] ASR model.

We also propose a new PEFT method, namely random pro-
jection, which frzes the downscale projection matrix in LoRA
to halve the number of trainable parameters. We compare these
methods to standard differentially private fine-tuning (DP-
FT) in terms of word error rate (WER), number of trainable
parameters, and compute efficiency. Our experiments show
that DP-BitFit is the best performing and most parameter
efficient DP-PEFT method. DP-BitFit achieves the state-of-
the-art WER of 10.94% on LibriSpeech test-other and 7.79%
WER on LibriSpeech test-clean at (10, 3.52e—6)-DP by fine-
tuning only 2.9% of the parameters. Further, our work is the
first to show that one can leverage random synthetic audio
data (arguably having even lower privacy risks than publicly-
available data) to improve the privacy-utility trade-offs for DP
fine-tuning of large ASR models. Using synthetic data and
other standard optimizations, we improve the WER using DP-
BitFit to 8.0%. More generally, our results show that DP-
PEFT is advantageous for practical DP fine-tuning of large
ASR models.

To summarize, we make the following main contributions:

¢ We comprehensively evaluate the mainstream DP-PEFT
methods on large ASR models and find that DP-BitFit



provides the best privacy-utility trade-offs.

« We propose to use synthetic data to further improve the
privacy-utility trade-offs for DP-BitFit.

« Using DP-BitFit along with our improvements using syn-
thetic data, we achieve 8.0% WER on Librispeech test-
other using a 600M Conformer model pre-trained on Lib-
rilight and fine-tuned on Librispeech with (10, 3.52e—6)-
DP, which can serve as a benchmark for future DP ASR
fine-tuning.

II. BACKGROUND AND RELATED WORK
A. Differential Privacy

Differential privacy [19] (DP) is a formal notion of privacy,
at a high level based on comparing the information leakage
of any algorithm on adjacent input datasets. Specifically, two
input datasets are considered adjacent if one can be obtained
from the other by adding or removing one example. Informally,
a randomized algorithm satisfies DP if its output distributions
on any possible pair of adjacent input datasets are statistically
close.

Definition 1 (Differential privacy [19]). A randomized func-
tion F : D — R satisfies (g,0)-DP if, for any two adjacent
datasets D, D' € D and for any subset S C R, it holds that:

PrF(D) € 8] < ePr{F(D') € S] + 6. 1)

In deep learning, F is the training algorithm. Smaller values
of €,0 correspond to a stronger privacy guarantee.

DP-SGD [20] is the workhorse for DP deep learning.
In each training step, it randomly samples a mini-batch of
examples, clips each example’s gradient to a prefixed L2-
bound, and then adds calibrated noise to ensure privacy for the
gradient update. The DP guarantee for the algorithm is derived
by composition across training steps, using the Moments
Accountant[20], [21]. Though the foundational technique is
DP-SGD, the noised mini-batch gradient can be passed to any
deep learning optimizer that takes a mini-batch gradient as
input, without affecting the privacy of the training method.
We use Adam optimizer [22] in all experiments in this paper.

B. Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) [16], [17], [18], [23],
[24] is a class of fine-tuning techniques that update only a
small number of either newly added, or existing parameters
of a pre-trained large model. The first proposed PEFT is
Adapter [16], which adds two low-rank projection matrices
and one activation layer before the layer norm and after
the feed-forward layer in each Transformer block [25], and
only fine-tunes the added parameters. Inspired by the success
of Adapters, various PEFT techniques have been proposed
ever since. LORA [17] adds two low-rank projection matrices
parallel to feed-forward layers, and fine-tunes them. BitFit [18]
is a sparse fine-tuning method that trains only the bias terms
of the model. Figure 2 shows an illustration of full fine-tuning,
and popular PEFT methods for Encoder-Decoder ASR models.
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Fig. 2: Illustration of full fine-tuning and popular PEFT
methods for Encoder-Decoder ASR models.

DP-PEFT methods are also widely studied since they
attempt to solve the optimization problem in a lower-
dimensional space, which can be beneficial for DP train-
ing [10], [26]. Yu et al. [27] proposed reparameterized gradient
perturbation, which only perturbs the decomposed low-rank
matrices. Yu et al. [15] conducted a study of DP-PEFT meth-
ods on large language models, highlighting the potential of
DP-PEFT to beat DP-FT in the language domain. Bu e? al. [28]
proposed DP-BitFit which achieves the best memory efficiency
among all DP-PEFT methods via customized computation
graph optimization.

III. DP-FT AND DP-PEFTS FOR ASR

In this section, we conduct comprehensive experiments to
compare DP full fine-tuning (DP-FT) versus DP-PEFT meth-
ods on a large ASR model. The PEFT methods we evaluate
include Adapter, LoRA, and BitFit. We also introduce another
PEFT method called random projection (RP), which can be
implemented with a slight modification to LoRA, i.e., by
freezing the downscale projection matrix, and training only the
upscale projection matrix. By doing so, we halve the number
of trainable parameters in LoORA while achieving comparable
performance in the non-private setting. Our motivation for RP
for DP-PEFT is reducing the dimensionality for DP training.
Our experiments evaluate each method to understand the trade-
offs between privacy, model quality, and memory efficiency.

A. Experimental Setup

Training Recipe: We use a 600M parameter Conformer
encoder model [1] for our experiments. We replace batch
normalization [29] (BN) layers in the model with group
normalization [30] (GN) since BN enables information mixing
across training examples in the mini-batch, and thus results
in worse DP guarantees. We pre-train the encoder using the
BEST-RQ algorithm [31] on LibriLight [32] for one million
steps. We then attach a CTC decoder [33] and the PEFT-
specific parameters, if any, to the pre-trained encoder, and fine-
tune the model using LibriSpeech [34] for 100k steps unless
noted. Our experiments are implemented in PAX [35], and run
on Dragonfish TPUs with 8x8 topology.

Hyperparameters: Across all our (g,0)-DP experiments, we
set the clipping bound C' to 2.5. We fix 6 = 3.52e—6 to ensure
it is smaller than n—!, where n is the number of training



samples, as is standard in literature. For Librispeech, we have
n = 281241. The noise multiplier is set to achieve (e, d)-DP
with € = 10.0 for our fixed §. Note that according to recent
work [36], such a level of DP can be classified in the “Tier
2: Reasonable privacy guarantees”. To optimize performance,
we grid search key method-specific hyperparameters for each
PEFT (if any), e.g., the rank in LoRA. Since the trainable
parameters differ among FT and PEFT methods (as shown
in Figure 2), we separately grid search learning rates for the
encoder/added module(s) and the decoder to find the optimal
values for each DP FT/PEFT method. Unless otherwise stated,
we report the best experimental results for each DP FT/PEFT
method after the hyperparameter search mentioned above.
Evaluation Metrics: We report the word error rate (WER)
on both LibriSpeech test splits (i.e. test-clean and test-other),
denoted as WER_clean and WER_other, for our main re-
sults. Due to space constraints, ablation studies will only
report WER _other, as it reflects a more challenging evaluation
scenario. However, we emphasize that performance trends
generally align across both test splits.

B. Experimental Results

FT vs. PEFT: We first compare FT vs. PEFT without DP,
as shown in Figure 3a. In line with the PEFT literature,
FT achieves the best WER_clean of 1.87% and WER_other
of 3.41%. Among all the PEFTs, Adapter achieves the best
WER_clean of 1.89% and WER_other of 3.46%. BitFit,
while being the most parameter-efficient, suffers the strongest
performance regression. Another interesting observation is that
LoRA achieves 1.91% WER_clean and 3.51% WER_other
while RP, with half the number of trainable parameters in
encoder, achieves 1.98% WER_clean and 3.52% WER_other,
which indicates the potential of RP to replace LoRA in ASR.
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Fig. 3: Comparison results of WER_clean and WER_other
for DP FT/PEFT methods for the same number of fine-tuning
steps.

Next, we compare WER_other between DP-FT and DP-
PEFTs at (10, 3.52e—6)-DP, as summarized in Figure 3b. To

our surprise, DP-BiTFiT provides the best performance in
terms of both parameter efficiency and WER. It fine-tunes
only 2.9% parameters compared to FT, and achieves the best
WER _other of 10.94% and WER_clean of 7.79%. All DP-
PEFTs outperform DP-FT in terms of WER_clean, and except
for DP-Adapter, they also outperform DP-FT in WER_other.
This conforms with the observation by Yu et al. [15] in
the language domain. The conjectured reason is that PEFT
methods explore a much lower dimension space than FT, and
thus the impact of the added noise in DP is smaller.

1) Tuning details for specific DP-PEFTs: Bias Terms in
DP-BitFit: In DP-BitFit, we observe that the default training
of all bias terms in the ASR encoder leads to divergence of
training loss. We further conduct an architecture search for it.
Specifically, we freeze three types of bias terms in the ASR
encoder separately: those in layer normalization, convolutional
layers, and feed-forward layers. We find that freezing bias
terms in layer normalization prevents divergence. Thus, we
use this setting in all experiments involving DP-BitFit.
Initialization in DP-LoRA and DP-RP: Following Hu et
al. [17], we use a random Gaussian initialization with zero
mean and o standard deviation for every downscale projection
matrix in DP-LoRA and DP-RP. Figure 4 shows the impact
of 0 on DP-LoRA and DP-RP. We observe that for both
DP-LoRA and DP-RP, the WER_other first decreases then
increases as o increases. For example, DP-LoRA achieved
the lowest WER_other of 11.0% when o = 0.4, and DP-RP
achieved the lowest WER_other of 11.3% when ¢ = 0.3. Our
results indicate that appropriately setting o for initialization
can be crucial for the performance of DP-LoRA and DP-RP.
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Fig. 4: Impact of ¢ in Gaussian initialization on DP-LoRA/DP-
RP with (10, 3.52e—6)-DP.
LoRA Locations: We study the impact of adding LoRA
into different modules within the Conformer. Specifically,
we add LoRA either into the feed-forward (FFN) modules
(LoRA-FFN), or the self-attention modules (LoRA-Attention).
Figure 5a shows the comparison results in the non-private
setting. We see that LoORA-FFN always achieves lower WER
than LoRA-Attention at the same rank, indicating better utility
when adding LoRA to FFN modules. This differs from Trans-
formers, where LoRA is typically added into self-attention
modules [17].

Under (10, 3.52e—6)-DP, Figure 5b shows DP-LoRA-FFN
almost always outperforms DP-LoRA-Attention. To test the
statistical significance of the performance of DP-LoRA-FFN
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Fig. 5: Comparison results of WER_other for LoORA when
adding to self-attention and FFN.

over DP-LoRA-Attention, we conduct a paired t-test with
3 repeats under their best-performing settings. DP-LoRA-
FFN achieves 12.94% 40.05 WER_other, whereas DP-LoRA-
Attention achieves 15.60% =+ 0.02, where + is followed
by standard deviations. When a = 0.05, the resulting p-
value is 7.11e—5, which indicates a significant difference in
WER_other. Thus, DP-LoRA-FFN achieves statistically better
utility than DP-LoRA-Attention at (10, 3.52e—6)-DP.

C. Ablation Studies

Mini-Batch Size for DP-PEFT: Prior work [37], [38], [12]
shows that using larger mini-batch sizes is beneficial for
private training in the language and vision domains. PEFT
methods improve both memory and time efficiency of fine-
tuning, so it can be feasible to increase mini-batch sizes of
DP-PEFT methods when placing the same compute constraints
as DP-FT. We conduct an ablation study by increasing the
batch size for all DP-PEFT methods while consuming the same
TPU-hours as DP-FT. Concretely, we experiment by increasing
the default 512 mini-batch size by a factor of {2, 4,8, 12}, and
adjust the training steps and noise multiplier accordingly to
make sure all the runs consume almost equal TPU-hours and
satisfy (10, 3.52e—6)-DP.

Table I compares DP-FT and DP-PEFT methods by showing
WER_clean, WER_other and the optimal mini-batch size
multiplier for each method. Equating for TPU hours, we see
that all DP-PEFT methods achieve lower WER_other and
WER_clean than DP-FT. Their performance ranking is mostly
consistent with that when equating the number of fine-tuning
steps (Fig. 3b), except for DP-Adapter which improves from
the worst (with equal fine-tuning steps) to comparable to DP-
BitFit. DP-BitFit still provides the best WER_other of 9.1%.

TABLE I: Comparison results for DP FT/PEFT methods for
the same TPU-hours under (10, 3.52e—6)-DP. Bold highlights
optimal results.

WER Optimal Mini-Batch
Method clean | other Size Multiplier
DP FT 9.2 12.4 1
DP Adapter 6.0 9.2 8
DP LoRA 7.0 9.9 12
DP RP 8.5 11.3 2
DP BitFit 6.1 9.1 4
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Fig. 6: Impact of augmentation multiplicity on DP-BitFit
within the same TPU-hours under (10, 3.52e—6)-DP.

Augmentation Multiplicity for DP-BitFit: De et al. [12]
demonstrate that DP training for vision models benefits from
averaging gradients across M augmented versions of the same
training image before gradient clipping, where A denotes
the augmentation multiplicity. Here, we study the impact of
augmentation multiplicity for our consistently best-performing
DP-PEFT, namely, DP-BitFit. Figure 6 shows the impact of M
on DP-BitFit, keeping the TPU-hours constant. When M = 2,
WER_other decreases to 8.6%, which indicates some aug-
mentation multiplicity benefits DP-BitFit. However, M = 4
leads to higher WER_other. This is because larger M results
in fewer fine-tuning steps, and we see its negative effects
outweigh the benefits of larger augmentation multiplicity.

IV. IMPROVEMENTS USING SYNTHETIC DATA

In this section, we aim to further improve the utility of
DP BitFit. Inspired by recent works [26], [39], [40], [41]
showing the benefits of public/synthetic data in DP training,
we leverage TTS-generated [42] random-transcript utterances
(i.e., synthetic data) to fine-tune the bias terms and decoder
prior to DP-BitFit using LibriSpeech. Our intuition is that fine-
tuning with synthetic (non-private) data can lead to a better
initialization for DP-BitFit.

To this end, we generate synthetic training data as follows.
We first sample the 10,000 most frequent words from the
transcripts of LibriSpeech test-other, and assume this list of
common words is public knowledge that may not need privacy
protection. Focusing on only the most common vocabulary
words allows us to mimic natural speech patterns while
keeping the synthetic data generation process efficient. We
then randomly generate 20,000 transcripts, each consisting of
7 words randomly sampled from this top vocabulary set. A
7-word length was chosen because it can capture short natural
phrases while still allowing substantial linguistic variety across



the 20,000 samples. Finally, we pass these transcripts through a
TTS pipeline [42] with four speaker voices (2 male, 2 female)
to generate the synthetic utterances.

After getting the synthetic data, we first train both the pre-
trained ASR encoder and a randomly initialized ASR decoder
using the synthetic data for 3,000 steps. After this initial fine-
tuning on the synthetic data, we run DP-BitFit on LibriSpeech.

A. Experimental Results

Figure 7 shows the impact of synthetic data on DP-BitFit.
Leveraging synthetic data, the WER_other is further improved
to 8.0% for training with a mini-batch size of 2048. This is the
best WER _other we manage to achieve for (10, 3.52e—6)-DP.
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Fig. 7. Impact of synthetic data on DP BitFit when using
different mini-batch sizes under (10, 3.52e—6)-DP.

V. CONCLUSION

In this work, we extensively study different methods for
privately fine-tuning large ASR models. We evaluate DP full
fine-tuning and DP-PEFT methods, including DP-Adapter,
DP-LoRA, DP-RP, and DP-BitFit, on a state-of-the-art (SOTA)
600M Conformer-based ASR model. Our results demonstrate
DP-BitFit achieves the best memory-efficiency as well as
model quality. To further improve the privacy-utility trade-off,
we propose a novel method to leverage synthetic data. Under
a strong privacy guarantee of (10, 3.52e—6)-DP, our proposed
method combining DP-BitFit and synthetic data warmstarting
achieves a SOTA WER of 8.0% on LibriSpeech test-other. An
interesting future direction is leveraging public text corpuses
to generate higher-quality synthetic data, potentially improving
privacy-utility trade-offs for training large ASR models with
strong DP guarantees even further.
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