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Abstract—Despite considerable efforts on making them robust,
real-world AI-based systems remain vulnerable to decision-
based attacks, as definitive proofs of their operational robust-
ness have so far proven intractable. The canonical approach
in robustness evaluation calls for adaptive attacks, that is with
complete knowledge of the defense and tailored to bypass it. We
introduce a more expansive notion of adaptive and show how
not only attacks but also defenses should optimize through the
competitive game they form. To reliably measure robustness,
it is important to evaluate against realistic and worst-case
attacks. We augment attacks themselves and the evasive arsenal
at their disposal through adaptive control, while the same can
be done for defenses. We argue that active defenses, which
control how the system responds, are a necessary complement
to model hardening when facing decision-based attacks; then
show how these defenses can be circumvented by adaptive
attacks, only to finally elicit active and adaptive defenses. We
assert that AI-enabled adversaries pose a considerable threat
to black-box ML systems, rekindling the proverbial arms race
where defenses have to be AI-enabled too.

1. Introduction

AI models are predominantly trained, validated, and
deployed with little regard to their correct functioning under
adversarial activity, often leaving safety, ethical, and broader
societal impact considerations as an afterthought. Adver-
sarial contexts further aggravate the typical generalization
challenges that these models face with threats beyond model
evasion (extraction, inversion, poisoning [19]) while the
systems they enable often expose interfaces that can be
queried and used as adversarial “instructors”. Scoping on
model evasion, the most reliable mitigation to date is ad-
versarial training [25], [36], an approach not without limita-
tions as these models often remain irreducibly vulnerable at
deployment, particularly against black-box, decision-based
attacks [6], [10], [38].

In adversarial machine learning (AML) evaluating the
robustness of defenses against oblivious, non-adaptive, and
thus suboptimal attackers is inherently problematic [14],
[35]. Here we expand the conventional notion of adaptive,
from adapted attacks that have an empirical configuration
to bypass the defense, to include the capability to self-
adapt, where attacks adaptively control their parameters and
evasive actions together in response to how the model under
attack and its defenses respond [2]. We propose that self-
adaptive adversaries can modify their own policies through

reinforcement learning (RL) to become both optimal and
evade active detection. Notably, this can be performed in a
gradient-based manner even in fully black-box contexts [1],
a capability that properly reflects the level of adversarial
threat and does not overestimate the empirical robustness;
attackers will compute gradients after all.

All such attacks exhibit a behavior at-the-interface that
can be described as adversarial itself, a generalization that
subsumes adversarial examples and opens a path towards
novel defenses and mitigations. Aside from making the un-
derlying models more robust, this behavior can be countered
as such rather than relying on hardened models exclusively.
As models cannot update their decision boundary in an
online manner and in response to adversarial activity on their
interface, there has to be a complement to model hardening:
for instance active defenses such as rejection or misdirection
[4], [11], [31]. We contend that robust evaluations cannot
consider attacks or defenses in isolation, and that each
should have the capability to modify their operation through
interaction and in direct response to other agency in the
environment.

2. On Being Adaptive

While adversarial attacks have been extensively re-
searched in both white and black-box manner, defenses
have predominantly focused on white-box contexts [25],
[36]. As the black-box setting discloses considerably less
information, a seemingly intuitive conclusion is that white-
box defenses should suffice for the black-box case too. Yet
black-box attacks like [6], [10] have been highly effective
against a wide range of defenses like gradient masking [3],
preprocessing [9], [29], and adversarial training [25]. The
vast majority of adversarial defenses provide either limited
robustness or are eventually evaded by adapted attacks
[35]. Characteristically, preprocessing defenses are often
bypassed by expending queries for reconnaissance [32]. The
partial exception to this rule is adversarial training [25],
briefly described in Appendix A.

The correct way to evaluate a defense is against adap-
tive attacks: attacks with explicit knowledge of the inner
workings of a defense [35]. If however model hardening
is the defensive counterpart to white-box attacks, an active
defense like stateful detection is the counterpart to decision-
based attacks, and also the necessary complement to model
hardening. All decision-based attacks share an inherent se-
quentiality that can be useful in devising defenses against
them, like Blacklight does by rejecting queries through



quantization and hashing [22]. This defense was recently
bypassed by adapting existing attacks through rejection
sampling [15]. A simple adaptation however would put the
efficacy of the latter in question: what if Blacklight did not
disclose more information through the rejection signal? An
adversary could still adapt and devise a way to discern when
rejection takes place. The above are canonical examples of
what is meant as adaptive in AML.

At the same time, the level of threat attacks pose is often
unclear or not thoroughly evaluated. As demonstrated by
Croce et al. [14], it is very common that the parameters of
an attack are suboptimal, leading to underestimating their
performance and thus overestimating the claimed degree
of robustness. This can be further aggravated in black-box
contexts, where the attacker is largely oblivious of any pre-
processing or active defenses. The effectiveness of attacks
rests on the ability to adapt the policies that govern both their
operation and their evasive capabilities in tandem. Here we
expand on the notion of adaptive, as it is conventionally
understood, to include adaptive control: the ability of a
system to self-adapt and reconfigure itself in response to
changes in the dynamics of the environment in order to
achieve optimal behavior [2].

Typically, what is to be controlled is known in ad-
vance and well-defined. The moment however we consider
adaptive evaluations, new controls are immediately implied,
like rejection sampling in Blacklight. To flesh out the
twofold meaning of adaptive, one has to both imagine new
knobs [21], and discover their correct configuration. The
invention of knobs, a faculty strictly human so far, is a
way to impart controllability to the task: in our case the
instruments to bypass an existing defense. We conceptualize
this expanded definition of adaptive, essential for having
accurate evaluations in AML research, in Figure 1.

3. Adversarial Markov Games

The most compelling threat for deployed ML sys-
tems are hard-label, decision-based attacks like Bound-
ary Attack [6], HSJA [10], Guessing Smart (BAGS) [8],
Sign-Opt [12], Policy-driven (PDA) [38], QEBA [23], and
SurFree [26], which are becoming increasingly effective.
In HSJA for example, its optimization is guaranteed to
converge to a stationary point, which given typical values on
perturbation imperceptibility translates to near-perfect attack
success rates, even against adversarially trained models.
The limitations of adversarial training against decision-
based attacks can be attributed to the fundamentally out-of-
distribution (OOD) nature of adversarial examples, as that
makes the saddle point optimization of Eq. (1) intractable
to solve exhaustively. Additionally, it is challenging to in-
corporate decision-based attacks during stochastic gradient
descent: as approaches that navigate the decision boundary,
the further the latter is from convergence, the less effective
the attack is.

Decision-based attacks search for the optimal parame-
ters of the adversarial policy, those that minimize the per-
turbation in expectation; given its dimensionality however,

Figure 1. In AML adaptive means to invent new knobs that can bypass a
defense (lower open set); in control theory it means the precise tuning of
all known knobs. In this work, we reformulate adaptive to signify both.
In HSJA [10] for example, radius, steps, and jumps are parameters of the
attack, while rotate and translate are evasive transformations.

it can be intractable to learn a policy that modifies the
input space directly [28]. Instead, given a well-defined set of
controls we can formulate the adversarial task as a Markov
Decision Process (MDP) to be solved and learn an optimal
policy that minimizes the perturbation and evades detection.

In AI-enabled systems, the best practice is to freeze the
model after validation so that no novel issues are introduced
by retraining. While this is representative of real-world
settings, it is also what enables adversaries to discover
adversarial examples that could not be accounted for in
advance. The existence of a adversarial policy introduces
however a behavior which can be observed and utilized by
a defensive methodology. Consequently, model-hardening
approaches like adversarial training are necessary but also
insufficient in defending against decision-based attacks.

Claim 1. Given an adversarially trained model M, to
fully defend against decision-based attacks, two additional
capabilities are necessary: a) a decision function other than
the most probable class, and b) additional stateful context
upon which this decision is taken.

Intuitively, if the model always responds truthfully, the
adversary will be able to accurately execute its policy and
converge to the optimal adversarial; secondly, the model
should be able to differentiate between two, otherwise iden-
tical, queries when one is part of an attack and when is not.
Classification with rejection or intentional misdirection can
be such decision functions. The former has manifested in the
form of conformal prediction or learning with rejection [4],
[13]; while misdirection has emerged as a technique in
adversarial RL and cybersecurity domains [16], [31]. While
adversarially training can partially resist decision-based at-
tacks, the manner in which the model responds has com-
plementary potential. This gap between the empirical and
theoretically possible robustness to decision-based attacks
is the locus where a, distinct from model hardening, active
defense can emerge.

Active defenses have immediate implications on the
attacks themselves however. Deployed defenses are by def-
inition fixed, which makes the environment dynamics sta-



tionary. Bypassing the defense can then also be formulated
as an MDP to be solved. In such a two-player, zero-sum
game, following a stationary policy becomes exploitable
through the reward obtained by the opponent [34]. Active
defenses, a consequence of decision-based attacks, entail
adaptive adversaries.

Claim 2. Against an active defense πD
ϕ , a decision-based

attack following a non-adaptive and stationary adversarial
policy will perform arbitrarily worse in expectation.

Consider now an active similarity-based defense. In the
twofold meaning of adaptive we introduced, inventing con-
trol implies the potential to bypass; adaptive control implies
strategy instead, the online configuration of the available
tools for evasion [1]. Notably, this optimization can be fully
gradient-based despite the discrete and black-box nature of
the adversarial task [33]. Adaptively controlling attacks with
RL can recover the gradient-based solvability of the black-
box optimization task despite neither the active defense nor
the model itself being accessible in closed-form.

Postulate 1 (Adversarial Policy Gradient). Given model
M with an active defense πD

ϕ , adversary policy πA
θ that

generates queries xt, and a reward R(τ) ∈ {0, 1} reflecting
failure or success respectively in episode τ , the optimal
attack policy is obtained via the gradient of the expected
reward EπA

θ
[R(τ)].

An intuitive understanding of this postulate can be
derived from the Policy Gradient Theorem [33], and its
formulation is general to cover any defense mechanism
upon which examples are rejected, for example by using
explanations [27]. We note here that evasive transforma-
tions, which the model (but not the defense) is invariant
to, interfere with the perturbations from the adversarial
policy itself: the performance and evasiveness of an attack
are typically in a natural trade-off. These transformations
can be considered as set of additional controls, and like
attack parameters they themselves can be underperforming
out-of-the-box [14]. Thus the combined control of attack
and evasion parameters is a prerequisite to properly assess
the strength of a defense: their empirical configuration is
often suboptimal. This trade-off illustrates why the twofold
definition of adaptive is necessary in AML evaluations: first
to impart controllability to the task through the definition
of what can be controlled, and then to find the optimal
execution of the attack. The last piece of the puzzle is
turning active defenses also adaptive.

Claim 3. An active defense πD
ϕ achieves its optimum, i.e.

maximizes the expectation on perturbation, by adapting its
policy against a stationary attacker policy.

As offensive and defensive policies are strictly compet-
itive, we can define the reward P of the defensive policy
as P (τ) = ¬R(τ), then by making πA

θ stationary and πD
ϕ

adaptive in Postulate 1, we can reason that the optimal
defensive policy is determined also via the gradient of its ex-
pected reward. When offensive or defensive methodologies
become adaptive, their environments become in turn non-

Figure 2. Schematic model of an AMG environment. Due to the inherent
uncertainty of behavior at either side of the interface, it is a partially
observable environment mirrored for each agent where one’s decisions
become the other’s observations.

stationary [20], putting further pressure on the IID founda-
tions ML builds on. This multi-agent interaction constitutes
a competitive and sequential zero-sum game [5], [18], [24]
that we describe as an Adversarial Markov Game (AMG).
A more formal treatment is included in Appendix B.

4. Discussion

With AI-enabled decision-making becoming pervasive
in domains like governance, finance, employment, and of
course cybersecurity, more and more decisions are delegated
to AI which becomes increasingly accountable for upholding
safety and ethical constraints. As trustworthy AI is vital for
the healthy functioning of whole ecosystems, we highlight
security risks and potential mitigations in these inherently
black-box environments. While adversarial training remains
the most reliable defense, the amount of robustness it
imparts will vary and even be insufficient as AI-enabled
systems are susceptible to adaptive adversaries that devise
new evasive techniques and control them jointly with other
attack parameters. This can been achieved in the fully black-
box case and against active defenses; our Adversarial Policy
Gradient indicates that any combination of adversarial goals
– be it performance, stealthiness, disruption – can be opti-
mized in a gradient-based manner and it is straightforward
to generalize to any domain or modality.

In self-adaptive, we introduce a novel twofold definition
of adaptive: both devising new methods of outmaneuvering
opponents and adapting one’s operating policy with respect
to other agency in the environment. The AMG formulation
we introduce helps us reason on and assess the vulnerabil-
ities of AI-based systems by disentangling the inherently
complex and non-stationary task of learning in the presence
of competing agency; by modeling it as a fixed part of
the environment, we can simplify the task by computing
a best response against the observed behavior. This is an
important outcome for cybersecurity domains: as long as
proper threat analysis is carried out, one can readily employ
RL algorithms in order to devise optimal defenses; but only
after they devised optimal attacks too.
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Appendix A.

Given dataset D = (xi, yi)
n
i=1 with classes C where

xi ∈ Rd is a clean example and yi ∈ 1, ..., C is the
associated label, the objective of adversarial training is to
solve the following min-max optimization problem:

min
ϕ

Ei∼D max
∥δi∥Lp≤ϵ

L(hϕ(xi + δi), yi) (1)

where xi+δi is an adversarial example of xi, hϕ : R → RC

is a hypothesis function and L(hϕ(xi + δi), yi) is the loss
function for the adversarial example xi + δi. The inner
maximization loop finds an adversarial example of xi with
label yi for a given Lp-norm (with Lp ∈ {0, 1, 2, inf}), such
that ∥δi∥l ≤ ϵ and hϕ(xi + δi) ̸= yi. The outer loop is the
standard minimization task typically solved with stochastic
gradient descent. While the convergence and robustness
properties of adversarial training have been investigated
through the computation of the inner maximization step and
by interleaving normal and adversarial training [36], the
min-max principle is conspicuous: minimize the possible
loss for a worst case (max) scenario.

Appendix B.

As adaptive decision-based attacks and defenses are
logical consequences of each other, by composing them
we can form a turn-taking competitive game. A precise
game-theoretic formulation however requires the exact an-
alytical description of the whole environment: the model,
the players and their utility functions, as well as the per-
mitted interactions and the transition dynamics, something
exceedingly intractable in most cybersecurity environments.
Model-free methods however can learn optimal offensive
and defensive responses directly through interaction with the
environment [30], [31], obviating the need to learn a model
of it or to find exact solutions to the bilevel optimization
task of adversarial training that is NP-hard to solve [7].

We model AMGs after Turn-Taking Partially-Observable
Markov Games (TT-POMGs), introduced by Greenwald et
al. [17]. TT-POMGs are a generalization of Extensive-
Form Games (EFGs), widely used representations for non-
cooperative, sequential decision-making games of imperfect
or incomplete information. A useful property of TT-POMGs
is that they can be transformed to equivalent belief state
MDPs, significantly simplifying their solution. By folding
other agents strategies into the transition probabilities and
the initial probability distribution of the game, an optimal

policy computed in the resulting MDP will correspond to
the best-response strategy in the original TT-POMG. The
congruence between TT-POMGs and MDPs is useful also
for its practical implications in the security of ML-based sys-
tems: provided that adversarial agents and their capabilities
can be identified through rigorous threat analysis, computing
the best response strategy in the simulated environment will
correspond to the optimal defense.

The goal of each player in an AMG – depicted in
Figure 2 – is to determine a policy that maximizes their
expected reward. When a player employs a stationary pol-
icy, the AMG reduces to a belief-state MDP where others
interact with a fixed environment. Formally, we represent
AMG as a tuple ⟨i, S,O,A, τ, r, γ⟩

• i = {D,A} are the players, where D denotes the
defender and A denotes the adversary. In our model,
benign queries are modeled as moves by nature.

• S is the full state space of the game, while O =
{OD, OA} are partial observations of the full state for
each player.

• A = {AD, AA} denotes the action set of each player.
• τ(s, ai, s′) represents the transition probability to state
s′ ∈ S after player i chooses action ai.

• r = {rD, rA} : Oi × Ai → R is the reward function
where ri(s, ai) is the reward of player i if in state s
action ai is chosen.

• γi ∈ [0, 1) is the discount factor for player i.
The game is sequential and turn-taking, so each player i

chooses an action a from Ai which subsequently influences
the observations of others. As without implausible assump-
tions one cannot assume access to the exact state of other
agents, each state is a partial observation of the complete
state of the full game. When a player employs a fixed
policy, the AMG reduces to a belief-state MDP where the
other interacts with a stationary environment. Considering
such policies as part of the environment is equivalent to 0th
level recursive reasoning in the study of opponent modeling:
the agent models how the opponent behaves based on the
observed history, but not how the opponent would behave
based on how the agent behaves [1], [37].

AMGs can be solved with single-agent RL; as AI-
enabled systems proliferate we expect that more involved re-
cursive reasoning and explicit opponent modeling will prove
essential. The most compelling and formidable challenge
however remains the automation of adaptive evaluations in
AML, by inventing instruments of bypassing defenses and
imparting controllability to the adversarial task.
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