Beyond fine-tuning: LoRA modules boost near-OOD detection and LLM security
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Abstract—Under resource constraints, LLMs are usually fine-
tuned with additional knowledge using Parameter Efficient
Fine-Tuning (PEFT), using Low-Rank Adaptation (LoRA)
modules. In fact, LoRA injects a new set of small trainable
matrices to adapt an LLM to a new task, while keeping the
latter frozen. At deployment, LoRA weights are subsequently
merged with the LLM weights to speed up inference. In
this work, we show how to exploit the unmerged LoRA’s
embedding to boost the performance of Out-Of-Distribution
(OOD) detectors, especially in the more challenging near-
OOD scenarios. Accordingly, we demonstrate how improving
OOD detection also helps in characterizing wrong predictions
in downstream tasks, a fundamental aspect to improve the
reliability of LLMs. Moreover, we will present a use-case in
which the sensitivity of LoORA modules and OOD detection
are employed together to alert stakeholders about new model
updates. This scenario is particularly important when LLMs
are out-sourced. Indeed, test functions should be applied as
soon as the model changes the version in order to adapt
prompts in the downstream applications. In order to validate
our method, we performed tests on Multiple Choice Question
Answering datasets, by focusing on the medical domain as
a fine-tuning task. Our results motivate the use of LoRA
modules even after deployment, since they provide strong
features for OOD detection for fine-tuning tasks and can be
employed to improve the security of LLMs.

1. Introduction

Large Language Models (LLMs) are gaining popularity
due to their general-purpose capabilities and are increas-
ingly integrated into real-world applications, including
medicine [31] and finance [20]. Their fast developing pace
and ease of integration is alarming, since misconfiguration
can be particularly damaging [4, 16, 34]. New government
regulations are focusing on LLM-based applications. The
EU Al Act [1] and the White House Executive Order on
Al systems [3] are setting plans for their safe deployment,
including the “robust monitoring of Al systems” [1]. Addi-
tionally, new OWASP [2] guidelines have been published,
highlighting the security risks of integrating LLM into
applications.

One major challenge of Machine Learning is protecting
against unexpected behaviours of the model. Indeed, real-
world applications might involve data that differs from the
training one due to distributional shifts [36]. Coupled with
random effects in the data, these shifts can make the model
more uncertain about its predictions [13]. Consequently,
detecting such Out-Of-Distribution (OOD) instances [36]
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Figure 1: Boosting LLM security with LoRA modules.
Given a fine-tuned LLM and the LoRA embeddings of the
FT dataset, one can check: (1) if the LoRA embeddings
of a new dataset are OOD, (2) if the model version has
changed by detecting changes in LoRA embeddings, (3)
if a prediction should be discarded due to an OOD input
sample or low-confidence output.
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is crucial to allow users to discard untrustworthy pre-
dictions. While OOD detection has been a fast-growing
field, especially on classification tasks, these approaches
have been also been recently extended to LLMs and text
generation [25]. In this paper, we will study OOD detection
in the context of fine-tuned LLMs employing Low-Rank
Adaptation (LoRA) modules [11].

Fine-tuning is a common practice for adapting a model
to a specific domain. However, recent results raise new
concerns on the reliability of fine-tuned LLMs. Indeed, fine-
tuning can deteriorate previous safety alignments enforced
during pre-training [23]. Moreover, it has been shown that
fine-tuning worsens OOD robustness [7].

Low-Rank Adaptation (LoRA) modules [11] are com-
monly used to allow fine-tuning LLMs under resources
constraints. Given a froze LLM, these small trainable
modules are first injected for task adaptation and then
merged with the model to reduce latency at inference
time. Originally designed for fine-tuning purposes, LoRA
modules are now being employed for greater control
beyond their original purpose. Such applications include
task arithmetic (add, combine or remove learned proper-
ties) [37], scaling the influence of the fine-tuned task at
inference[27], and switching tasks using dynamic LoRA
module routing [12, 28].

In the following, we show how unmerged LoRA
modules can also be exploited to improve the security and
reliability of LLMs. First, we show that LoORA embeddings
are more sensitive to near-OOD samples, allowing simpler



OOD detectors such as the Mahalanobis Distance [18]
to perform well in most scenarios. Second, we will
present a novel use-case of OOD detection for model
inspection. Model updates might in fact require version
checking [9], to prevent major security flaws such as
backdoor attacks [35] as well as simple misconfiguration in
the LLM service supply chain [9]. With LoRA embeddings,
one can easily detect model changes even under subtle
updates. Last, we will test how LoRA embeddings improve
runtime prediction monitoring, also known as selective
prediction [8, 17, 33], when an LLM is employed for
downstream tasks such as question answering. While OOD
detection accounts for unintended inputs, a prediction
might be uncertainty also due to random effects in the data.
These two sources of uncertainty are usually referred to
as epistemic, due to lack of knowledge, and aleatoric
uncertainty, due to the stochastic nature of the data-
generating process [13]. Similar to previous results on
vision tasks [15], we will show how aggregating OOD
detection and the entropy of the model confidence can
improve the reliability of LLMs. This combined approach,
accounting for the two sources of uncertainty, improves the
detection of incorrect predictions compared to taking each
individual metric alone. We will focus on decoder-only
LLMs and medical Multiple Choice Question Answering
(MCQA). However, it’s important to note that our methods
are applicable to other large pre-trained models fine-tuned
with LoRA and other generation tasks.

Contributions. In Section 3 we show that LoRA em-
bedding boost the detection performance in near-OOD
scenarios over the fine-tuning task. In Section 3 we present
a novel use-case where OOD detection is employed to
detect model updates. Last, in Section 3 we combine OOD
detection and the output entropy to improve near-OOD
runtime prediction monitoring in downstream tasks.

2. Methods

Datasets and Model. We integrated the previous results
on OOD detection with RMD within the abstractive
summarization and translation domains [25] by focusing
on multiple question answering, which limits the number
of generated token to 1. We selected three MCQA datasets
and chose the medical domain as a fine-tuning task, by
considering the MedMCQA [22] and the PubMedQA [14]
datasets. Then, we employed the MMLU [10] multi-
domain dataset to define both near- and far-OOD samples
(refer to Section A.1 to get the subtasks assigned to
each category). In contrast to [25], we use a decoder
only language model: Llama2-7B [32]. Llama2-7B has a
vocabulary size of 32000, an embedding size of 4 096 and
has 32 layers. We fine-tuned the model with LoRA [11]
on the MedMCQA training split, using a batch size of 32,
the Adam optimizer and a learning rate of 2e-4. Moreover,
we set LoRA to rank 16 and attached it to the query and
value projections of each transformer layer. Concatenating
all LoRA embeddings leads to a final embedding of size
32 x 2 x 16 = 2048.

Embeddings. We compare two types of embeddings:
last layer activations and LoRA embeddings. LoRA
reparametrization of the ¢-th layer can be expressed as

l{(x) = Wiz + B* Az, where W is the pretrained frozen
weights and B*A’ are two matrices of the LoRA module.
Now, given an input of N tokens, we define the last
layer activation embedding as Fypa(z) := %\{\]Zf\; IE(z)
and LoRA embeddings as Erora(z) = 7 Yooy |[F2, Al
Where [F is the final layer activation for token 7, and
HjLzlAj 2 denotes the concatenation of all LoRA mod-
ules intermediate activation A7z for the L layers (see
Fig. A.1). Both embeddings are scaled through division by
the maximum value. Importantly, we considered multiple
layer embeddings only with LoRA, due to its reduced
dimensionality compared to the full-rank layers. Both MD
and RMD employed the embeddings on the fine-tuning
dataset to compute fisrqin and Xirgin.

2.1. OOD Detection and Prediction Monitoring

In order to perform OOD detection, we selected three
approaches with different requirements and ease of use.
The Mahalanobis Distance (MD) [19] is a well-known
approach for OOD detection that has the advantage of
not requiring any hyperparameter tuning. The Relative
Mahalanobis Distance (RMD) [24] is an improvement over
MD that is expected to boost the performance in near-OOD
scenarios, by correcting the MD with given a so-called
background distribution. In our case, the embeddings of
PubMedQA will be used as the background dataset. Last,
KNN [30] is a recently proposed OOD detector, which
requires the selection of the number of neighbours %k (in
our experiments, we used k£ = 100).

By detecting the embeddings that are far from the
in-distribution ones, OOD detectors capture the epistemic
uncertainty of the model. While the epistemic uncertainty
is a result of lack of knowledge, the aleatoric uncertainty
is related to the randomness in the data [13]. In order to
estimate the aleatoric uncertainty, we simply compute the
entropy of the token providing the answer to the question.
Similar to [15], we will consider a combination of the
two uncertainty in order to define a stronger approach to
monitor the predictions of our model, also called selective
prediction [8, 17, 33]. For this experiment, we will consider
the MD approach, that thanks to the LoRA embeddings
achieves good performance while having less requirements
than RMD and KNN (see Table 1). While MD has no
upper-bound, the entropy has range [0, 1]. Therefore, in
order to combine them, it would be convenient to rescale
the former. Since the squared MD follows a Chi-squared
distribution with degrees of freedom equal to the number
of dimensions [21], we can take the p-value of the Chi-
squared distribution instead of the distance to obtain a
normalized value. The final metric will just be the sum
of the p-value and the entropy. More details about each
method can be found in Section A.2.

3. Results

LoRA Modules Improve Near-OOD Detection. In Ta-
ble 1 we compare the AUROC score for OOD detection
of different embeddings (Err4, Frora) on both near-
and far-OOD datasets, as defined in Section A.l, against
the test dataset of MedMCQA (our in-distribution fine-
tuning domain). In accordance with the results reported



Near OOD Far OOD

Method clinical anatomy cgllege computer professional
knowledge biology science law
Perplexity 0.651 0.383 0.654 0.587 0.712
Last Layer Activation (Er 4)
KNN 0.387 0.296 0.786 0.997 0.999
MD 0.428 0.312 0.774 0.997 0.999
RMD#* (baseline) 0.688 0.730 0.998 0.997 0.999
LoRA (ELora)
KNN 0.819 0.729 0.890 0.997 0.998
MD 0.814 0.733 0.890 0.996 0.994
RMD* 0.828 0.762 0.998 0.993 0.999

Table 1: OOD detection AUROCs. AUROCsS distinguish-
ing MMLU tasks from the MedMCQA dataset.

* RMD requires a background dataset.

(baseline) The approach of [25].

in [25], the perplexity proves to be a poor choice as an
OOD score, as it struggles to distinguish even far-OOD
datasets. When employing the last layer embeddings, all the
methods perfectly discriminate far-OOD datasets. However,
in near-OOD scenarios only RMD demonstrates positive
performance, while KNN and MD fail completely. On the
other hand, LoRA embeddings allow KNN and MD to
perform on par with RMD on the near-OOD datasets, while
keeping the same high performance on the far-OOD ones.
As clearly emerges from Fig. A.2, LoRA embeddings boost
the performance of the simpler MD approach, that neither
requires hyperparameter tuning nor additional datasets
like KNN and RMD, respectively. Indeed, RMD heavily
depends on the goodness of the background dataset to
perform well in the near-OOD dataset. Overall, LoRA’s
improvement over the last layer embedding is promising
towards an improved and more efficient OOD detection in
fine-tuning tasks.

Detecting Model Updates. Given the good performance
of the simple MD approach on LoRA embeddings, even in
near-OOD scenarios, we investigate an interesting use-case
to improve the security of fine-tuned LLMs: detecting the
degree of change of a model version update. This time,
instead of checking if an external dataset is OOD, we aim
to detect whether the embeddings of the in-distribution data
have changed due to a (possibly unexpected) model update.
OpenAI’s models endpoint degradation over time on some
specific tasks [6] underlines the practical significance
of this issue. Existing methods, such as verifying model
weights hashes [9] or using zero-knowledge proofs [29],
offer only a binary indication of model change. Given a
dataset of interest and a model version, our approach is
instead able to quantify model change. Such a scenario
is relevant when a stakeholder out-sources LLM for a
specific fine-tuning task, where a model update might
trigger a testing cascade on downstream tasks [9]. Indeed,
prompts may be invalidated on a different model version
and malicious updates might inject backdoors in the
model [35]. In Fig. 2, we present the MD AUROCs
for discriminating between the embeddings of our LLM
fine-tuned for 500 steps on the MedMCQA training set
(model version 0) and those obtained after fine-tuning for
> 500 steps (next versions). Clearly, LoORA embeddings
are much more sensitive to model updates than the last
layer ones: while the latter has an AUROC > .8 1000

AUROCs for detecting model change

500 Steps
(Version 0)
0.6 —— LORA

—e— Last Layer Activation

600 750 1000 1250 1500 1750 2000 2250 2500
Finetuning Steps

Figure 2: AUROCSs distinguishing the embeddings at
different fine-tuning steps. AUROCs of the Mahalanobis
Distance distinguishing MedMCQA embeddings (LoRA,
last layer) after 500 fine-tuning steps (model version 0)
from the ones after > 500 steps (next model versions).

MedMCQA  Near OOD  Far OOD
Entropy 0.554 0.541 0.547
MD Last Layer Activation 0.528 0.509 0.510
MD Last Layer Activation + Entropy  0.582 0.550 0.549
MD LORA 0.531 0.523 0.509
MD LORA + Entropy 0.589 0.576 0.543

Table 2: AUROCS scores when differentiating correct
and incorrect predictions. We considered the MedMCQA
validation dataset, and the near- and far-OOD datasets
defined in Section A.1.

fine-tuning steps after version 0 at 500 steps.

Runtime Monitoring Predictions. In Table 2 we report
the AUROCs when detecting incorrect model predictions,
i.e., wrong answer choices. We tested the output entropy,
MD on the two types of embeddings and a combination
of the two. The results show again how LoRA helps to
improve MD in the near-OOD scenario, even if the setting
is different than Section 3. Moreover, aggregating MD and
entropy achieves the best performance, due to the different
sources of uncertainty captured by the two metrics, i.e.
epistemic and aleatoric [13].

4. Conclusion

In our experiments, we found compelling evidence
supporting the hypothesis that LoORA embeddings possess
stronger near-OOD properties compared to last layer
activations and perplexity in fine-tuning tasks, integrating
previous research on OOD detection in LLMs [25]. This
enables LLM-based applications to better monitor whether
the model is being used for the intended task, to quantify
model version changes when the LLM is out-sourced, and
to halt the model when the uncertainty about its predictions
in a downstream task is too high. Importantly, LoRA
modules allow us to employ simpler approaches for OOD
detection, such as the Mahalanobis distance, that neither
rely on additional data nor require hyperparameter tuning.
Our findings suggest that LoRA weights should be kept
also at deployment time to keep fine-grained control over
the fine-tuning task for security purposes. Note that our
work relies on the LoRA embedding being served from
the LLM API endpoint, which is currently not standard
practice in platforms like HuggingFace.
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Figure A.1: Embedding generation. For each N input
token, we collect a concatenation of the LoORA embeddings
and the last layer activation. The final LoRA embeddings
are an average of all the concatenations. For Last Layer
Activation embeddings, the same averaging process is
applied.

A. Appendix

A.l1. Datasets (extended version)

We selected three Multiple Choice Question Answering
(MCQA) datasets and chose the medical domain as a
fine-tuning task, by considering the MedMCQA [22] and
the PubMedQA [14] datasets. Then, we employed the
MMLU [10] multi-domain dataset to define both near- and
far-OOD samples.

The MedMCQA dataset [22] contains around 194 000
multiple-choice questions, each with four options, derived
from the Indian medical entrance exams (AIIMS and
NEET). It includes 21 medical subjects and around 2400
healthcare related topics.

The PubMedQA dataset [14] contains 1000 expert-
annotated and 211 300 artificially generated labelled Ques-
tion Answering (QA) instances. The task involves generat-
ing a yes/no/maybe answers based on a context provided
in the form of a PubMed abstract.

The MMLU dataset [10] includes questions from 57
different domains. As near-OOD, we selected subtasks
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related to the medical domain such as “anatomy”, “clinical
knowledge”, “college medicine”, “medical genetics”, “pro-
fessional medicine”, and “college biology”. Conversely, as
far-OOD we picked: “professional law”, “international
law”, “business ethics”, “computer security”, “college
computer science”, “astronomy”, “abstract algebra” and
“college chemistry”. These subtasks feature multiple-choice

questions with four options and a known correct answer.

A.2. Related Work

OOD Detections Methods. Perplexity score assesses how
effectively a language model predicts the next word in a
sequence. Intuitively, a lower perplexity score suggests less
uncertainty and better performance in prediction. Thus, it
serves as an indicator of the input sequence’s proximity
to the training dataset.

For Out-Of-Distribution (OOD) detection, if the em-
bedding of a test input or output significantly deviates
from the training data’s embedding distribution, it’s likely
to be OOD. From the many existing OOD detection
approaches [36], we selected three of them.

k-nearest neighbours (KNN) [30] computes the dis-
tance to the k-th nearest neighbours in the training set
within a normalized embedding space, using this distance
as an OOD indicator. Two key parameters, alpha and &, are
involved. Alpha determines the proportion of training data
used for nearest neighbour calculations, and k specifies
the particular nearest neighbour.

Mahalanobis distance (MD) [19] measures the OOD
score by fitting a Gaussian, NV'(u, ¥), u € R%, ¥ € RIx4,
to the training embeddings and using the Mahalanobis
distance:

MD(z) := MD(x; 1, %) := (x — )" Sz —p) (1)

Previous methods struggle to distinguish the fine-tuned
task from other similar tasks. To address this, the Relative
Mahalanobis Distance (RMD) [24] has been proposed to
improve near-OOD detection:

RMDtrain(x) = MDlrain(fL') - MDbg(x) ()

Where M Dyq(x) is the Mahalanobis distance with
regard to a background dataset, that in our scenario is the
PubMedQA dataset.

OOD Detection in LLM. When it comes to LLMs, the
RMD has been tested in [25] for conditional language
models using the last layer activation of the encoder
and decoder. They evaluated RMD with 2 experiments:
distinguishing different version of newspaper summaries
and types of translations as near-OOD tasks. Note that this
method involves using an additional background dataset
bg, ideally encompassing the topics of near-OOD tasks.
The end goal is to further differentiate embeddings in the
near-OOD domain.

For an MCQA task, selective prediction have been
tested by adding another answer “None Of the Above” [26],
as well as training a classifier on top of the fine-tuned
model [5].

A.3. Combining MD and Entropy

Given a question z, let f;(z) be the output confidence
of an LLM for the ¢-th answer. Then, the Shannon entropy
of the output is defined as:

H(x) = — Z fi(z)log fi(x) 3)

Moreover, given a Mahalanobis distance M D for a
data point x, the squared distance M D? follows a Chi-
square (X27d) distribution with d degrees of freedom [21],
where d is the number of dimensions of the data point.
The p-value associated with this Mahalanobis distance is
calculated as follows:

pup(z) =1 — CDF,2.4(MD?(z)) 4)

where CDF, 2,4 represents the cumulative distribution
function of the chi-square distribution with d degrees of
freedzom evaluated at the squared Mahalanobis distance
M D=

Last, given a question x with the associated LLM
embeddings E(z) (either Eppa or Epora), We can compute
the p-value pp;p for the Mahalanobis distance of the
embeddings and the Shannon entropy H(x) of the model
prediction. The final combination is simply defined as:
H (@) + parn (B (x)).
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Figure A.2: OOD scores distributions. Distribution of the OOD scores of MedMCQA validation set (in-distribution, in
orange), compared to the MMLU medical subjects (near-OOD, in blue) and non-medical topics (far-OOD, in green)
defined in Section A.l. From left to right: perplexity scores, Mahalanobis Distance (MD) on the last layer activation and
on the LoRA embeddings.
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